1.不稳定流动伯努利方程
机动往复空压机工作时,活塞运动速度和加速度均是不断变化的,导致吸入管路、液缸内、排出管路液流 的速度和加速度也是变化的,属于不稳定流动。
此时,液流速度c 和压力p不仅是位置的函数,同时还是时间的函数。
在理想流体的不稳定液流的微小流束中取一微元段,长为ds,面积为dA。由于是理想 流体,所以,液体间无摩擦力,只有重力和压力的作用。
将作用在这一微元段液体上的全部外力投影到流动方向上,根据牛顿第二定律可得 式,即理想液体不稳定流动伯努利万程,它牧稳足凯动旧劳利力程多一项,这一 项是由液体作变速运动所引起,称为惯性水头。
不稳定流动伯努利方程,可用来分析机动往复空压机在吸入和排出过程中液缸内压力的变化。
2.吸入过程中活塞表面压力的变化
无空气室单作用往复空压机装置中,以吸入液面为基准,列出I-1和II- I截面间的不稳定流动,伯努利方程为吸入过程中活塞表面。
当吸入液面为大气压力时,pi=pa; p1=0; z1 =0; 的压力; cn=u,为活塞运动速度; zn=z为几何吸入高度。
吸入系统的水力损失,由两部分组成,一部分是吸入管路中的水力损失,另 一部分是吸入阀的水力损失。
吸入管路的水力损失(包括沿程与局部损失) 与管中流速的平方成正比, 由连续性方程知,也与活塞速度的平方成正比。
所以可将其表示为吸人阀的水力损失在整个工作过程中几乎是保持不变的, 仅在进气阀开启时,由于惯将以上各项代人式中,合并整理后则得性,需要克服较大的阻力。
可用Pe-8曲线表示活塞表面扬程随曲柄转角日变化的规律,如图所示,因此,该图上:
1) z与曲柄转角0无关,为一水平线。
2) 速度水头和吸入管路的水力损失为日角的一阶和二阶简谐合成运动的二次函数,在OP处为最大值。
3) 吸入阀的阻力损失Oh,在工作过程中基本不 变,为一水平线,只是因惯性的原因,在开启时有 一最大阻力值并有脉动。
4) 吸入管路的惯性水头
与活塞运动的加速度成正比,与吸入管路长度成正比,与吸入管面积成反比。
将式中各项随曲柄转角0变化的曲线叠加后,即可得到吸人过程中活塞表面压力水头PmB 由于以上几项因素的影响,所以,在吸入过程的变化曲线,活塞表面的压力是变化的。
其中惯性水头的变化最大,并且在吸人开始时达到最大值,致 使此时活塞表面的压力降为最低值。
因此,惯性水头是影响吸人过程中活塞表面压力变化最 主要的因素。